3.280 \(\int \frac{x^m (a+b \sin ^{-1}(c x))^2}{(d-c^2 d x^2)^2} \, dx\)

Optimal. Leaf size=279 \[ -\frac{b^2 c^2 (m+1) x^{m+3} \text{HypergeometricPFQ}\left (\left \{1,\frac{m}{2}+\frac{3}{2},\frac{m}{2}+\frac{3}{2}\right \},\left \{\frac{m}{2}+2,\frac{m}{2}+\frac{5}{2}\right \},c^2 x^2\right )}{d^2 \left (m^2+5 m+6\right )}+\frac{b c (m+1) x^{m+2} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{m+2}{2},\frac{m+4}{2},c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{d^2 (m+2)}+\frac{(1-m) \text{Unintegrable}\left (\frac{x^m \left (a+b \sin ^{-1}(c x)\right )^2}{d-c^2 d x^2},x\right )}{2 d}+\frac{b^2 c^2 x^{m+3} \text{Hypergeometric2F1}\left (1,\frac{m+3}{2},\frac{m+5}{2},c^2 x^2\right )}{d^2 (m+3)}+\frac{x^{m+1} \left (a+b \sin ^{-1}(c x)\right )^2}{2 d^2 \left (1-c^2 x^2\right )}-\frac{b c x^{m+2} \left (a+b \sin ^{-1}(c x)\right )}{d^2 \sqrt{1-c^2 x^2}} \]

[Out]

-((b*c*x^(2 + m)*(a + b*ArcSin[c*x]))/(d^2*Sqrt[1 - c^2*x^2])) + (x^(1 + m)*(a + b*ArcSin[c*x])^2)/(2*d^2*(1 -
 c^2*x^2)) + (b*c*(1 + m)*x^(2 + m)*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, (2 + m)/2, (4 + m)/2, c^2*x^2])
/(d^2*(2 + m)) + (b^2*c^2*x^(3 + m)*Hypergeometric2F1[1, (3 + m)/2, (5 + m)/2, c^2*x^2])/(d^2*(3 + m)) - (b^2*
c^2*(1 + m)*x^(3 + m)*HypergeometricPFQ[{1, 3/2 + m/2, 3/2 + m/2}, {2 + m/2, 5/2 + m/2}, c^2*x^2])/(d^2*(6 + 5
*m + m^2)) + ((1 - m)*Unintegrable[(x^m*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2), x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.408235, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int \frac{x^m \left (a+b \sin ^{-1}(c x)\right )^2}{\left (d-c^2 d x^2\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Int[(x^m*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^2,x]

[Out]

-((b*c*x^(2 + m)*(a + b*ArcSin[c*x]))/(d^2*Sqrt[1 - c^2*x^2])) + (x^(1 + m)*(a + b*ArcSin[c*x])^2)/(2*d^2*(1 -
 c^2*x^2)) + (b*c*(1 + m)*x^(2 + m)*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, (2 + m)/2, (4 + m)/2, c^2*x^2])
/(d^2*(2 + m)) + (b^2*c^2*x^(3 + m)*Hypergeometric2F1[1, (3 + m)/2, (5 + m)/2, c^2*x^2])/(d^2*(3 + m)) - (b^2*
c^2*(1 + m)*x^(3 + m)*HypergeometricPFQ[{1, 3/2 + m/2, 3/2 + m/2}, {2 + m/2, 5/2 + m/2}, c^2*x^2])/(d^2*(6 + 5
*m + m^2)) + ((1 - m)*Defer[Int][(x^m*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2), x])/(2*d)

Rubi steps

\begin{align*} \int \frac{x^m \left (a+b \sin ^{-1}(c x)\right )^2}{\left (d-c^2 d x^2\right )^2} \, dx &=\frac{x^{1+m} \left (a+b \sin ^{-1}(c x)\right )^2}{2 d^2 \left (1-c^2 x^2\right )}-\frac{(b c) \int \frac{x^{1+m} \left (a+b \sin ^{-1}(c x)\right )}{\left (1-c^2 x^2\right )^{3/2}} \, dx}{d^2}+\frac{(1-m) \int \frac{x^m \left (a+b \sin ^{-1}(c x)\right )^2}{d-c^2 d x^2} \, dx}{2 d}\\ &=-\frac{b c x^{2+m} \left (a+b \sin ^{-1}(c x)\right )}{d^2 \sqrt{1-c^2 x^2}}+\frac{x^{1+m} \left (a+b \sin ^{-1}(c x)\right )^2}{2 d^2 \left (1-c^2 x^2\right )}+\frac{\left (b^2 c^2\right ) \int \frac{x^{2+m}}{1-c^2 x^2} \, dx}{d^2}+\frac{(1-m) \int \frac{x^m \left (a+b \sin ^{-1}(c x)\right )^2}{d-c^2 d x^2} \, dx}{2 d}+\frac{(b c (1+m)) \int \frac{x^{1+m} \left (a+b \sin ^{-1}(c x)\right )}{\sqrt{1-c^2 x^2}} \, dx}{d^2}\\ &=-\frac{b c x^{2+m} \left (a+b \sin ^{-1}(c x)\right )}{d^2 \sqrt{1-c^2 x^2}}+\frac{x^{1+m} \left (a+b \sin ^{-1}(c x)\right )^2}{2 d^2 \left (1-c^2 x^2\right )}+\frac{b c (1+m) x^{2+m} \left (a+b \sin ^{-1}(c x)\right ) \, _2F_1\left (\frac{1}{2},\frac{2+m}{2};\frac{4+m}{2};c^2 x^2\right )}{d^2 (2+m)}+\frac{b^2 c^2 x^{3+m} \, _2F_1\left (1,\frac{3+m}{2};\frac{5+m}{2};c^2 x^2\right )}{d^2 (3+m)}-\frac{b^2 c^2 (1+m) x^{3+m} \, _3F_2\left (1,\frac{3}{2}+\frac{m}{2},\frac{3}{2}+\frac{m}{2};2+\frac{m}{2},\frac{5}{2}+\frac{m}{2};c^2 x^2\right )}{d^2 \left (6+5 m+m^2\right )}+\frac{(1-m) \int \frac{x^m \left (a+b \sin ^{-1}(c x)\right )^2}{d-c^2 d x^2} \, dx}{2 d}\\ \end{align*}

Mathematica [A]  time = 7.95983, size = 0, normalized size = 0. \[ \int \frac{x^m \left (a+b \sin ^{-1}(c x)\right )^2}{\left (d-c^2 d x^2\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(x^m*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^2,x]

[Out]

Integrate[(x^m*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^2, x]

________________________________________________________________________________________

Maple [A]  time = 0.526, size = 0, normalized size = 0. \begin{align*} \int{\frac{{x}^{m} \left ( a+b\arcsin \left ( cx \right ) \right ) ^{2}}{ \left ( -{c}^{2}d{x}^{2}+d \right ) ^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^2,x)

[Out]

int(x^m*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^2,x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{m}}{{\left (c^{2} d x^{2} - d\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^2,x, algorithm="maxima")

[Out]

integrate((b*arcsin(c*x) + a)^2*x^m/(c^2*d*x^2 - d)^2, x)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b^{2} \arcsin \left (c x\right )^{2} + 2 \, a b \arcsin \left (c x\right ) + a^{2}\right )} x^{m}}{c^{4} d^{2} x^{4} - 2 \, c^{2} d^{2} x^{2} + d^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^2,x, algorithm="fricas")

[Out]

integral((b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2)*x^m/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x)

________________________________________________________________________________________

Sympy [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{a^{2} x^{m}}{c^{4} x^{4} - 2 c^{2} x^{2} + 1}\, dx + \int \frac{b^{2} x^{m} \operatorname{asin}^{2}{\left (c x \right )}}{c^{4} x^{4} - 2 c^{2} x^{2} + 1}\, dx + \int \frac{2 a b x^{m} \operatorname{asin}{\left (c x \right )}}{c^{4} x^{4} - 2 c^{2} x^{2} + 1}\, dx}{d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**2,x)

[Out]

(Integral(a**2*x**m/(c**4*x**4 - 2*c**2*x**2 + 1), x) + Integral(b**2*x**m*asin(c*x)**2/(c**4*x**4 - 2*c**2*x*
*2 + 1), x) + Integral(2*a*b*x**m*asin(c*x)/(c**4*x**4 - 2*c**2*x**2 + 1), x))/d**2

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{m}}{{\left (c^{2} d x^{2} - d\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^2,x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^2*x^m/(c^2*d*x^2 - d)^2, x)